Principal Features

HASTELLOY® S alloy (UNS N06635) is a nickel-base, high-temperature alloy with a unique combination of properties. It has excellent thermal stability, low thermal expansion and excellent oxidation resistance to 2000°F (1093°C). In addition, the alloy has good high-temperature and thermal fatigue strength. S alloy retains its strength and ductility after aging at temperatures of 800 to 1600°F (427 to 871°C).

S alloy was developed for applications involving severely cyclical heating conditions where components must be capable of retaining their strength, ductility, and metallurgical integrity after long-time exposure. It is used extensively as seal rings in gas turbine engines where its low thermal expansion coefficients is also important.

All wrought forms of S alloy are supplied in the solution heat treated condition unless otherwise specified. The standard heat-treatment is 1950°F (1066°C) followed by cooling in air or hydrogen. Since the alloy is very stable, cooling rates from slow-fumace cooling to rapid ice-brine quenching have virtually no effect on the mechanical properties.

HASTELLOY® S alloy can be readily forged and, because of its excellent ductility, can be cold worked. It can be welded by both manual and automatic welding methods including gas tungsten arc (GTAW), and gas metal arc (GMAW). Forging should be performed from 2100°F (1145°C) to 1600°F (871°C) up to the final 20 percent cross-section reduction. The final 20 percent reduction should be done from about 1900°F (1038°C) to 1500°F (816°C).

*Please contact our technical support team if you have technical questions about this alloy.

Nominal Composition

Weight %
Nickel 67 Balance
Cobalt 2 max.
Chromium 16
Molybdenum 15
Iron 3 max.
Silicon 0.4
Manganese 0.5
Carbon 0.02 max.
Aluminum 0.25
Boron 0.015 max.
Lanthanum 0.02
Tungsten 1 max.

Physical Properties

Average Physical Properties

Physical Property British Units Metric Units
Density 72°F
0.316 lb/in3
22°C
8.75 g/cm3
Melting Temperature 2435-2516°F - 1335-1380°C -
Electrical Resistivity 77°F 50.4a µohm-in 25°C 1.28a µohm-m
Thermal Conductivity 392°F
97 Btu-in/ft2-hr-°F
200°C 14.0 W/m-°C
572°F
112 Btu-in/ft2-hr-°F
300°C 16.1 W/m-°C
752°F
124 Btu-in/ft2-hr-°F
400°C 17.9 W/m-°C
932°F
135 Btu-in/ft2-hr-°F
500°C 19.5 W/m-°C
1112°F
146 Btu-in/ft2-hr-°F
600°C 21.0 W/m-°C
1292°F
181 Btu-in/ft2-hr-°F
700°C 26.1 W/m-°C
1472°F
181 Btu-in/ft2-hr-°F
800°C 26.1 W/m-°C
1652°F
181 Btu-in/ft2-hr-°F
900°C 26.1 W/m-°C
1742°F
188 Btu-in/ft2-hr-°F
950°C 27.1 W/m-°C
1832°F
194 Btu-in/ft2-hr-°F
1000°C 28.0 W/m-°C
Thermal Diffusivity 212°F
0.006 in2/s
100°C
3.9 x 10-6m2/s
392°F
0.006 in2/s
200°C
3.9 x 10-6m2/s
572°F
0.006 in2/s
300°C
3.9 x 10-6m2/s
752°F
0.007 in2/s
400°C
4.5 x 10-6m2/s
932°F
0.007 in2/s
500°C
4.5 x 10-6m2/s
1112°F
0.008 in2/s
600°C
5.2 x 10-6m2/s
1292°F
0.008 in2/s
700°C
5.2 x 10-6m2/s
1472°F
0.008 in2/s
800°C
5.2 x 10-6m2/s
1652°F
0.008 in2/s
900°C
5.2 x 10-6m2/s
1742°F
0.008 in2/s
950°C
5.2 x 10-6m2/s
1832°F
0.009 in2/s
1000°C
5.8 x 10-6m2/s
Specific Heat 32°F 0.095 Btu/lb-°F 0°C 398 J/kg-°C
122°F 0.099 Btu/lb-°F 50°C 414 J/kg-°C
212°F 0.102 Btu/lb-°F 100°C 427 J/kg-°C
302°F 0.105 Btu/lb-°F 150°C 440 J/kg-°C
392°F 0.107 Btu/lb-°F 200°C 448 J/kg-°C
482°F 0.109 Btu/lb-°F 250°C 456 J/kg-°C
572°F 0.111 Btu/lb-°F 300°C 465 J/kg-°C
662°F 0.113 Btu/lb-°F 350°C 473 J/kg-°C
752°F 0.114 Btu/lb-°F 400°C 477 J/kg-°C
842°F 0.115 Btu/lb-°F 450°C 481 J/kg·°C
932°F 0.117 Btu/lb-°F 500°C 490 J/kg·°C
1022°F 0.118 Btu/lb-°F 550°C 494 J/kg·°C
1112°F 0.119 Btu/lb-°F 600°C 498 J/kg·°C
1202°F 0.120 Btu/lb-°F 650°C 502 J/kg-°C
1292°F 0.142 Btu/lb-°F 700°C 594 J/kg-°C
1382°F 0.142 Btu/lb-°F 750°C 594 J/kg-°C
1472°F 0.141 Btu/lb-°F 800°C 590 J/kg-°C
1562°F 0.142 Btu/lb-°F 850°C 594 J/kg-°C
1652°F 0.142 Btu/lb-°F 900°C 594 J/kg-°C
1742°F 0.143 Btu/lb-°F 950°C 598 J/kg-°C
1832°F 0.143 Btu/lb-°F 1000°C 598 J/kg-°C
1922°F 0.143 Btu/lb-°F 1050°C 598 J/kg-°C
2012°F 0.144 Btu/lb-°F 1100°C 603 J/kg-°C
Mean Coefficient of Thermal Expansion 68-200°F 6.4 µin/in-°F 20-93°C
11.5 x 10-6m/m-°C
68-400°F 6.8 µin/in-°F 20-204°C
12.2 x 10-6m/m-°C
68-600°F 7.1 µin/in-°F 20-316°C
12.8 x 10-6m/m-°C
68-800°F 7.3 µin/in-°F 20-427°C
13.1 x 10-6m/m-°C
68-1000°F 7.4 µin/in-°F 20-538°C
13.3 x 10-6m/m-°C
68-1200°F 7.6 µin/in-°F 20-649°C
13.7 x 10-6m/m-°C
68-1400°F 8.0 µin/in-°F 20-760°C
14.4 x 10-6m/m-°C
68-1600°F 8.3 µin/in-°F 20-871°C
14.9 x 10-6m/m-°C
68-1800°F 8.6 µin/in-°F 20-982°C
15.5 x 10-6m/m-°C
68-2000°F 8.9 µin/in-°F 20-1093°C
16.0 x 10-6m/m-°C
Dynamic Modulus of Elasticity 75°F
30.8 x 106psi
24°C 212 GPa
675°F
28.2 x 106psi
357°C 194 GPa
1000°F
26.4 x 106psi
538°C 182 GPa
1200°F
25.2 x 106psi
649°C 174 GPa
1400°F
24.1 x 106psi
760°C 166 GPa
1495°F
23.3 x 106psi
813°C 161 GPa
1700°F
21.9 x 106psi
927°C 151 GPa
2000°F
19.2 x 106psi
1093°C 132 GPa

Oxidation Resistance

Comparative Static Oxidation Resistance 1008 Hour Static Oxidization in Flowing Air*

Test Temperature Alloy Metal Loss Metal Loss and Internal Penetration Linearly Extrapolated Rate of Attack
°F °C - mils mm mils mm mils mm
1800 982 214® 0.07 0.002 0.20 0.005 1.7 0.043
S 0.18 0.005 0.49 0.012 4.3 0.109
188 0.18 0.005 0.58 0.015 5.0 0.127
230® 0.25 0.006 0.71 0.018 6.2 0.158
625 0.32 0.008 0.72 0.018 6.3 0.160
600 0.32 0.008 0.90 0.023 7.8 0.198
X 0.34 0.009 0.94 0.024 8.2 0.208
556® 0.39 0.010 1.05 0.027 9.1 0.218
310 SS 0.35 0.009 1.13 0.029 9.8 0.249
800H 0.94 0.024 1.79 0.045 15.6 0.396
2000 1093 214® 0.08 0.002 0.08 0.002 0.7 0.018
230® 0.45 0.011 1.27 0.032 11.0 0.279
S 0.44 0.011 1.29 0.033 11.2 0.285
310 SS 0.97 0.023 1.30 0.033 11.3 0.287
188 0.43 0.010 1.33 0.033 11.6 0.290
600 1.10 0.027 1.63 0.041 14.1 0.358
556® 0.97 0.027 2.57 0.065 22.3 0.566
X 1.49 0.038 2.72 0.069 23.6 0.599
625 3.27 0.083 4.80 0.122 41.7 1.059
800H 5.39 0.137 7.39 0.188 64.2 1.631
2100 1149 214® 0.15 0.004 0.31 0.008 2.7 0.069
S 1.01 0.026 1.66 0.042 14.4 0.366
600 1.73 0.044 2.86 0.073 24.9 0.633
230® 2.29 0.058 3.44 0.087 29.9 0.760
310 SS 2.97 0.075 4.44 0.113 38.6 0.980
X 4.50 0.114 5.83 0.148 50.6 1.285
188 7.23 0.184 8.03 0.204 69.8 1.773
800H 7.52 0.191 8.86 0.225 77.0 1.956
556® 9.31 0.237 11.64 0.296 101.2 2.571
625 15.96 0.405 18.20 0.462 158.2 4.018

*Cycled to room temperature once a week

Schematic of Metallographic Technique Used for
Dynamic Oxidation and Hot Corrosion Evaluations

Average Dynamic Oxidation Resistance*

Test Temperature Test Period Metal Loss/Slide Maximum Penetration Side Total Metal Affected/Side
°F °C h mils mm mils mm mils mm
1600 871 100 1.0 0.03 0.3 0.01 1.3 0.03
1800 982 100 1.4 0.04 0.7 0.02 2.2 0.06
2000 1093 100 1.6 0.04 2.2 0.06 3.8 0.10

*Samples exposed to the combustion products of No. 2 fuel oil (0.4 percent sulfur). Hot gas velocity was 280ft./sec. (85mm/sec). Thermal shock frequency was 2 cycles per hour, consisting of cooling from test temperature to <500ºF (<260ºC) and back to test temperature in two minutes.

Comparative Average Dynamic Oxidation Resistance

Test Temperature Test Period Maximum Metal Affected/Side
S 230® X 25
°F °C h mils mm mils mm mils mm mils mm
1800 982 1000 6.6 0.17 3.5 0.09 6.4 0.16 7.6 0.19
2000 1093 500 15.2 0.39 5.7 0.14 13.5 0.34 <31.0*** 0.79***

*Samples exposed to the combustion products of No. 2 fuel oil (0.4 percent sulfur). Hot gas velocity was 280ft./sec. (85mm/sec). Thermal shock frequency was 2 cycles per hour, consisting of cooling from test temperature to <500ºF (<260ºC) and back to test temperature in two minutes.
**Metal loss plus maximum internal penetration
***Sample was consumed

Corrosion Resistance

Average Hot Corrosion Resistance

Test Temperature Test Period Metal Loss/Slide Maximum Penetration Side Total Metal Affected/Side
°F °C h mils mm mils mm mils mm
1650 899 200 1.2 0.03 1.5 0.04 2.7 0.07
1650 899 1000 4.0 0.10 3.5 0.09 7.5 0.19

Comparative Average Hot Corrosion Resistance

Test Temperature Test Period Total Metal Affected/Side
S 188 X
°F °C h mils mm mils mm mils mm
1650 899 200 2.7 0.07 1.5 0.04 2.7 0.07
1650 899 1000 7.5 0.19 3.5 0.09 7.5 0.19

* All tests performed by exposure to the combustion products of No. 2 fuel oil (0.4 percent sulfur) and 5 ppm of sea salt. Gas velocity over samples was 13 ft/sec (4 m/s). Thermal stock frequency was one hour.

Comparative Nitriding Resistance

1200°F for 168 Hours in NH3

Alloy Depth of Nitrided Layer Nitrogen Absorption
mils mm
(mg/cm2)
230® 1.2 0.03 0.7
600 1.3 0.03 0.8
S 1.1 0.03 1.3
214® 1.5 0.04 1.5
800H 4.1 0.10 4.3
304 SS 8.4 0.21 9.8

Comparative Carburization Resistance

1800ºF for 55 Hours in 5%CO-5%CH4-5%H2-Ar

Alloy
Carbon Absorption (mg/cm2)
214® 0.6
S 2.1
230® 2.5
X 2.5
310 SS 3.3
601 4.8

Comparative Molten Chloride Salt Resistance

1550ºF for 1 Month in BaCl2-KCl-NaCl Mixed Salts

Alloy Metal Loss Plus Internal Penetration
 mils  mm
188  27  0.69
 S  40  1.02
 304 SS  75  1.91
 600   96  2.44
 601  115  2.92

Hardness

Room Temperature*

Form Aging Temperature Aging Time Hardness
°F °C h HRA
Sheet Solution-annealed - 52
1000 538 1000 64
4000 66
8000 65
16000 67
1200 649 1000 56
4000 55
8000 56
16000 55
1400 760 1000 54
4000 54
8000 53
16000 54
Plate Solution-annealed - 57
800 427 1000 57
4000 52
8000 52
16000 56
1000 538 1000 64
4000 63
8000 65
16000 67
1200 649 1000 57
4000 55
8000 56
16000 57
1400 760 1000 57
4000 57
8000 56
16000 57
1600 871 1000 56
4000 56
8000 54
16000 54
All Weld Metal** As-Welded - 56
1000 538 1300 64
4000 66
1200 649 1000 55
4000 59
8000 57
16000 58

*Single tests from a single hear for each form    **Gas tungsten arc welded
HRA = Hardness Rockwell “A”

Impact Strength

Aged Plate*

Aging Temperature Aging Time Average Charpy V-Notch Impact Strength
°F °C h ft. lbs. J
Solution-annealed - 140 190
800 427 1000 147** 199**
4000 147** 199**
8000 147** 199**
16000 130 176
1000 538 1000 114 155
4000 76 104
8000 67 90
16000 47 64
1200 649 1000 85 115
4000 67 91
8000 54 73
16000 49 66
1400 760 1000 79 107
4000 52 71
8000 48 65
16000 39 53
1600 871 1000 107 145
4000 109 148
8000 105 142
16000 109 148

*Average of four tests of 1/2in (12.7m) plate from a single heat

Tensile Data

Form Test Temperature 0.2% Offset Yield Strength Ultimate Tensile Strength Elongation
Sheet 0.045 to 0.063 in (1.1 to 1.6 mm) thick °F °C ksi MPa ksi MPa %
RT RT 64.5 444 129.8 844 49
1000 538 49.1 338 112.3 773 50
1200 649 46.7 322 104.5 720 56
1400 760 45.1 311 84.1 574 70
1600 871 31.6 218 48.6 341 47
1800 982 16.0 110 28.0 193 46
2000 1093 7.6 52 15.9 110 75
Plate 3/8 to 1-in (9.5 to 25.4 mm) thick RTa RTa 55.6 383 123.1 849 55
200 93 52.9 365 118.0 814 60
400 204 48.0 331 114.4 789 59
600 316 42.2 291 109.7 756 63
800 427 43.1 297 108.9 751 62
1000 538 41.0 283 105.9 727 61
1200 649 39.8 274 99.1 683 59
1400 760 39.3 271 79.3 547 69
1600 871 33.8 233 52.7 363 57
1800 982 19.6 135 33.0 228 62
2000 1093 8.8 61 17.0 117 69

a-Based pm 34 tests. At other temperatures, the number of tests varied from 7-23.
RT=Room Temperature

Average Aged Tensile Data, Room Temperature*

Form Aging Temperature Aging Time 0.2% Offset Yield Strength Ultimate Tensile Strength Elongation
°F °C h ksi MPa ksi MPa %
Sheet 0.057 in (1.45 mm) thick Solution-annealed - 128.6 887 63.0 434 58
1000 538 1000 178.6 1231 109.2 753 45
4000 181.7 1253 107.5 741 41
8000 185.1 1276 119.1 821 41
16000 186.8 1288 120.5 831 38
1200 649 1000 133.4 920 69.3 478 56
4000 130.3 898 66.3 457 52
8000 132.5 914 65.9 454 54
16000 133.1 918 68.4 472 50
1400 760 1000 133.3 919 66.6 459 54
4000 132.2 910 64.9 447 51
8000 131.1 904 65.3 450 54
16000 128.3 885 62.6 432 52
Plate ½ in (12.7 mm) thick Solution Heat-Treated - 125.3 864 52.9 365 54
800 427 1000 125.7 867 55.9 385 60
4000 126.9 875 55.5 383 60
8000 126.7 874 56.6 390 55
16000 128.0 883 57.9 399 56
1000 538 1000 144.4 996 71.5 493 46
4000 175.0 1207 102.5 707 44
8000 180.8 1247 108.2 746 38
16000 182.5 1258 108.9 751 39
1200 649 1000 125.1 863 56.6 390 57
4000 125.8 867 56.4 389 54
8000 127.2 877 57.0 393 50
16000 127.9 882 59.3 409 49
1400 760 1000 126.0 869 53.7 370 55
4000 127.4 878 54.1 373 52
8000 127.5 879 53.5 369 46
16000 127.5 879 53.9 372 47
1600 871 1000 125.8 867 50.8 350 58
4000 125.2 863 50.7 350 56
8000 123.5 852 51.3 354 53
16000 123.3 850 50.5 348 56

*Test Data for each form are from a single heat.

Average Welded and Aged Tensile Data, Room Temperature*

Form Aging Temperature Aging Time 0.2% Offset Yield Strength Ultimate Tensile Strength Elongation
°F °C h ksi Mpa ksi MPa %
Gas Tungsten arc Welded Plate ½ in (12.7mm) Thick Solution-annealed - 59.8 412 112.4 775 62
1000 63.3 436 121.7 839 33
4000 60.4 416 122.8 847 32
1200 649 8000 62.2 429 119.1 821 26
16000 63.6 439 155.6 1073 25
All Weld Metal** Solution-annealed - 66.6 459 105.1 725 55
1300** 98.4 678 139.8 964 24
1000 538 4000** 107.6 742 145.6 1004 26
1000 60.7 419 102.5 707 24
4000 52.9 365 110.3 760 25
1200 649 8000 61.7 425 102.3 705 20
16000 66.4 458 110.3 760 21

*Test data for each form are form a single heat
**Gas tungsten arc welded

Creep and Stress-Rupture Data

Average Rupture Data, Sheet*

Test Temperature Average Rupture Life Strength for Time Indicated
10 h 100 h 1000 h
°F °C ksi MPa ksi MPa ksi MPa
1200 649 62.5 431 50.0 345 38.0 262
1350 732 39.0 269 28.2 194 20.2 139
1500 816 23.5 162 15.0 103 9.9 68
1700 927 9.6 66 5.8 40 - -

*0.045 in (1.1 mm) to 0.063 in (1.6 mm) thick

 

Average Rupture Data, Plate*

Test Temperature Average Rupture Life Strength for Time Indicated
10 h 100 h 1000 h
°F °C ksi MPa ksi MPa ksi MPa
1200 649 80.0 552 58.0 400 27.0 186
1300 704 56.0 386 38.0 262 16.0 110
1400 760 38.0 262 24.5 169 9.8 68
1500 816 25.0 172 16.0 110 5.8 40
1600 871 16.5 114 9.8 68 3.0 21

*1-in. (25.4mm) thick plate

Average Creep Data, Sheet*

Test Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
10 h 100 h 1000 h
°F °C % ksi MPa ksi MPa ksi MPa
1200 649 0.2 45.0 310 31.5 217 21.0 145
0.5 50.0 345 35.5 245 24.0 165
1.0 56.5 390 40.0 276 27.0 186
1350 732 0.2 22.0 152 14.1 97 9.0 62
0.5 25.0 172 16.2 112 10.4 72
1.0 29.0 200 19.0 131 12.2 84
1500 816 0.2 10.2 70 5.9 41 - -
0.5 11.8 81 7.0 48 - -
1.0 13.8 95 8.4 58 - -

*0.045 in (1.1 mm) to 0.063 (1.6 mm) thick

Average Creep Data, Plate*

Test Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
10 h 100 h 1,000 h 10,000 h
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 0.2 45.0 310 27.0 186 17.0** 117** - -
0.5 54.0 372 32.6 255 19.0 131 - -
1.0 56.0 386 34.0 234 20.8 143 13.5 93
1300 704 0.2 24.0 165 12.5 86 6.7** 46** - -
0.5 29.0 200 16.5 114 9.0 62 - -
1.0 34.0 234 20.0 138 12.0 83 7.2 50
1400 760 0.2 13.0 90 6.5 45 3.3** 23** - -
0.5 16.9 117 9.2 63 4.8 33 - -
1.0 20.7 143 11.8 81 6.7 46 3.7 26
1500 816 0.2 7.8 54 3.8 26 1.9** 13** - -
0.5 10.0 69 5.7 39 3.0 21 - -
1.0 12.5 86 6.9 48 3.8 26 2.2 15
1600 871 0.2 4.7 32 2.2 15 1.1** 7.6** - -
0.5 6.3 43 3.5 24 1.9 13 - -
1.0 7.6 52 4.1 28 2.2 15 1.1 8

*1 in (25.4 mm) thick plate           **Extrapolated

Disclaimer

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data displayed on this site but makes no representations or warranties as to the data’s accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums.  It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc.  All trademarks are owned by Haynes International, Inc., unless otherwise indicated.

Alloy Brochure

Download