Principal Features

High Resistance to Hydrochloric Acid, Sulfuric Acid, Pitting, and Crevice Corrosion

HASTELLOY® HYBRID-BC1® (UNS N10362) alloy possesses much higher resistance to hydrochloric and sulfuric acids than the nickel-chromium-molybdenum (C-type) alloys, and can tolerate the presence of oxidizing species. The alloy also exhibits extremely high resistance to pitting and crevice corrosion.

Applications

HASTELLOY® HYBRID-BC1® alloy is suitable for the following applications in the chemical processing, pharmaceutical, agricultural, food, petrochemical, and power industries:

  • Reaction vessels
  • Heat exchangers
  • Valves
  • Pumps
  • Piping
  • Storage tanks

The alloy is suitable for use at temperatures up to approximately 427°C (800°F). HYBRID-BC1® alloy excels in reducing acids and acid mixtures (with or without halides) open to oxygen and other oxidizing residuals/contaminants.

Field Test Program

Plain and welded samples of HYBRID-BC1® alloy are available for field trials. If required, these samples can be weighed and measured prior to shipping, so that corrosion rates can be determined after field exposure (if the samples are returned to Haynes International). Be aware that plain samples are better for determination of corrosion rates, whereas welded samples are useful in comparing base metal, weld metal, and heat-affected zone properties. For samples, please click here.

*Please contact our technical support team if you have technical questions about this alloy.

pdf-icon-red.tmb-size-25-25Print Brochure

Nominal Composition

Weight %
Nickel Balance
Cobalt 1 max.
Molybdenum 22
Chromium 15
Iron 2 max.
Aluminum 0.5 max
Manganese 0.25
Silicon 0.08 max.
Carbon 0.01 max.

Iso-Corrosion Diagrams

Each of these iso-corrosion diagrams was constructed using numerous corrosion rate values, generated at different acid concentrations and temperatures. The blue line represents those combinations of acid concentration and temperature at which a corrosion rate of 0.1 mm/y (4 mils per year) is expected, based on laboratory results. Below the line, rates under 0.1 mm/y are expected. Similarly, the red line indicates the combinations of acid concentration and temperature at which a corrosion rate of 0.5 mm/y (20 mils per year) is expected. Above the red line, rates of over 0.5 mm/y are expected. Between the blue and red lines, corrosion rates are expected to fall between 0.1 and 0.5 mm/y. The iso-corrosion diagram for hydrofluoric acid should be used with caution. Internal attack of nickel alloys is common in this acid; thus field tests prior to industrial use are even more important. Also, while HYBRID-BC1 alloy possesses useful resistance to nitric acid, stainless steels are generally preferred to nickel alloys in pure nitric.

Corrosion Data

Uniform Corrosion Data – British Units

Chemical Concentration Temperature HYBRID-BC1® C-22® C-276 C-2000® B-3®
- wt % °F mpy mpy mpy mpy mpy
HCl 1 Boiling <1 2 13 <1 <1
5 200 12 119 49 54 12
5 Boiling 18 354 143 167 3
10 150 11 39 18 26 9
10 175 15 78 46 61 11
15 150 11 39 21 28 9
15 175 17 75 48 67 11
20 150 11 35 22 27 8
20 175 18 68 43 57 10
H2SO4 10 Boiling 1 11 7 4 <1
20 Boiling 2 33 19 7 1
30 200 3 27 17 2 4
30 Boiling 4 74 33 17 1
50 200 2 30 24 6 2
50 Boiling 9 393 143 132 1
70 200 1 37 20 17 <1
90 200 1 71 18 15 1
HBr 10 200 2 59 35 13 11
30 200 15 44 30 36 11
40 200 13 26 21 24 10
H3PO4 70 250 4 5 3 3 3
80 250 1 5 4 3 4

Uniform Corrosion Data – Metric Units

Chemical Concentration Temperature HYBRID-BC1® C-22® C-276 C-2000® B-3®
- wt % °C mm/y mm/y mm/y mm/y mm/y
HCl 1 Boiling 0.01 0.06 0.33 0.01 0.01
5 93 0.31 3.02 1.25 1.37 0.30
5 Boiling 0.45 8.9 3.63 4.23 0.08
10 66 0.27 0.98 0.46 0.65 0.24
10 79 0.38 1.99 1.18 1.54 0.28
15 66 0.28 0.98 0.54 0.70 0.23
15 79 0.44 1.91 1.21 1.69 0.29
20 66 0.29 0.90 0.55 0.69 0.21
20 79 0.45 1.72 1.10 1.46 0.26
H2SO4 10 Boiling 0.03 0.29 0.18 0.09 0.01
20 Boiling 0.06 0.83 0.49 0.18 0.02
30 93 0.08 0.68 0.42 0.04 0.09
30 Boiling 0.09 1.89 0.83 0.42 0.02
50 93 0.06 0.77 0.62 0.16 0.04
50 Boiling 0.24 9.98 3.64 3.35 0.03
70 93 0.03 0.94 0.50 0.42 0.01
90 93 0.03 1.80 0.46 0.37 0.02
HBr 10 93 0.05 1.50 0.89 0.34 0.28
30 93 0.37 1.12 0.75 0.91 0.29
40 93 0.34 0.66 0.53 0.60 0.25
H3PO4 70 121 0.11 0.13 0.08 0.07 0.08
80 121 0.02 0.12 0.09 0.08 0.09

Selected Corrosion Data

Hydrobromic Acid

Physical Property British Units Metric Units
Density RT
0.319 lb/in3
RT
8.83 g/cm3
Electrical Resistivity RT 49.5 µohm.in RT 1.26 µohm.m
200°F 49.9 µohm.in 100°C 1.2 µohm.m
400°F 50.3 µohm.in 200°C 1.27 µohm.m
600°F 50.3 µohm.in 300°C 1.28 µohm.m
800°F 50.7 µohm.in 400°C 1.28 µohm.m
1000°F 51.4 µohm.in 500°C 1.29 µohm.m
1100°F 51.9 µohm.in 600°C 1.31 µohm.m
Thermal Conductivity RT
64 Btu.in/h.ft2.°F
RT 9.30 W/m.°C
200°F
72 Btu.in/h.ft2.°F
100°C 10.5 W/m.°C
400°F
84 Btu.in/h.ft2.°F
200°C 11.9 W/m.°C
600°F
95 Btu.in/h.ft2.°F
300°C 13.5 W/m.°C
800°F
106 Btu.in/h.ft2.°F
400°C 14.9 W/m.°C
1000°F
117 Btu.in/h.ft2.°F
500°C 16.4 W/m.°C
1100°F
121 Btu.in/h.ft2.°F
600°C 17.5 W/m.°C
Mean Coefficient of Thermal Expansion -250-70°F 5.5 µin/in.°F -150-25°C 10.0 µm/m.°C
-150-70°F 5.9 µin/in.°F -100-25°C 10.7 µm/m.°C
-50-70°F 6.1 µin/in.°F -50-25°C 11.0 µm/m.°C
0-70°F 6.3 µin/in.°F 0-25°C 11.3 µm/m.°C
70-200°F 6.4 µin/in.°F 25-100°C 11.5 µm/m.°C
70-400°F 6.6 µin/in.°F 25-200°C 11.9 µm/m.°C
70-600°F 6.8 µin/in.°F 25-300°C 12.2 µm/m.°C
70-800°F 7.0 µin/in.°F 25-400°C 12.5 µm/m.°C
70-1000°F 7.1 µin/in.°F 25-500°C 12.7 µm/m.°C
70-1100°F 7.0 µin/in.°F 25-600°C 12.7 µm/m.°C
Thermal Diffusivity RT
0.102 ft2/h
RT
0.0264 cm2/s
200°F
0.111 ft2/h
100°C
0.0291 cm2/s
400°F
0.124 ft2/h
200°C
0.0319 cm2/s
600°F
0.138 ft2/h
300°C
0.0352 cm2/s
800°F
0.151 ft2/h
400°C
0.0382 cm2/s
1000°F
0.163 ft2/h
500°C
0.0412 cm2/s
1100°F
0.168 ft2/h
600°C
0.0435 cm2/s
Specific Heat RT 0.096 Btu/lb.°F RT 403 J/kg.°C
200°F 0.099 Btu/lb.°F 100°C 416 J/kg.°C
400°F 0.102 Btu/lb.°F 200°C 429 J/kg.°C
600°F 0.105 Btu/lb.°F 300°C 439 J/kg.°C
800°F 0.108 Btu/lb.°F 400°C 449 J/kg.°C
1000°F 0.110 Btu/lb.°F 500°C 461 J/kg.°C
1100°F 0.109 Btu/lb.°F 600°C 457 J/kg.°C
Dynamic Modulus of Elasticity RT
31.5 x 106psi
RT 217 GPa
200°F
30.7 x 106psi
100°C 211 GPa
400°F
29.8 x 106psi
200°C 205 GPa
600°F
28.9 x 106psi
300°C 200 GPa
800°F
28.3 x 106psi
400°C 197 GPa
1000°F
27.5 x 106psi
500°C 191 GPa
1200°F
27.0 x 106psi
600°C 188 GPa
Dynamic Modulus of Elasticity (0.75" Thick Plate - Average of 3 Samples) -250°F
32.01 x 106psi
-157°C 220.7 GPa
-225°F
31.89 x 106psi
-143°C 219.9 GPa
-200°F
31.77 x 106psi
-129°C 219.1 GPa
-175°F
31.65 x 106psi
-115°C 218.3 GPa
-150°F
31.53 x 106psi
-101°C 217.4 GPa
-125°F
31.41 x 106psi
-87°C 216.6 GPa
-100°F
31.29 x 106psi
-73°C 215.8 GPa
-75°F
31.17 x 106psi
-59°C 215.0 GPa
-50°F
31.05 x 106psi
-46°C 214.1 GPa
-25°F
30.93 x 106psi
-32°C 213.3 GPa
0°F
30.81 x 106psi
-18°C 212.5 GPa
25°F
30.69 x 106psi
-4°C 211.6 GPa
50°F
30.57 x 106psi
10°C 210.8 GPa
75°F
30.44 x 106psi
24°C 210.0 GPa
Poisson’s Ratio - - RT 0.33

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254.
Data are from Corrosion Laboratory Jobs 23-07 and 5-08.
All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Hydrochloric Acid

Conc. Wt.% 50°F 75°F 100°F 125°F 150°F 175°F 200°F 225°F Boiling
10°C 24°C 38°C 52°C 66°C 79°C 93°C 107°C
2.5 - - - - - - - - -
5 - - - - - - - - 0.08
7.5 - - - - - - - - -
10 - - - - - 0.01 0.05 - 0.21
15 - - - - - - - - -
20 - - - - 0.04 0.31 0.37 - 0.47
25 - - - - - - - - -
30 - - 0.11 0.17 0.24 0.31 0.37 - 0.68
40 - - 0.09 0.14 0.20 0.28 0.34 - 0.85

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254.
Data are from Corrosion Laboratory Jobs 23-07 and 5-08.
All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Nitric Acid

Conc. Wt.% 50°F 75°F 100°F 125°F 150°F 175°F 200°F 225°F Boiling
10°C 24°C 38°C 52°C 66°C 79°C 93°C 107°C
1 - - - - - - 0.01 - 0.01
1.5 - - - - - - 0.01 - 0.06
2 - - - - - - 0.02 - 0.10
2.5 - - - - - - 0.04 - 0.15
3 - - - - - - 0.08 - 0.21
3.5 - - - - - - - - -
4 - - - - - - - - -
4.5 - - - - - - - - -
5 - - - <0.01 0.02 0.08 0.31 - 0.45
7.5 - - - - - - - - -
10 - - 0.02 0.13 0.27 0.38 0.53 - -
15 - - 0.12 0.21 0.28 0.44 0.57 - -
20 - - 0.12 0.18 0.29 0.45 0.68 - -

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254.
Data are from Corrosion Laboratory Jobs 23-07 and 5-08.
All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Phosphoric Acid

Conc. Wt.% 50°F 75°F 100°F 125°F 150°F 175°F 200°F 225°F Boiling
10°C 24°C 38°C 52°C 66°C 79°C 93°C 107°C
10 - - - - - 0.04 0.07 - 0.13
20 - - - 0.05 0.15 - - - -
30 - - 0.07 0.13 0.28 0.74 4.72 - -
40 - - 0.10 0.20 - - - - -
50 - - 0.11 0.29 0.98 4.45 17.40 - -
60 - - 0.14 0.40 - - - - -
70 - 0.08 0.19 0.54 2.62 9.54 20.52 - -

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254.
Data are from Corrosion Laboratory Jobs 23-07 and 5-08.
All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Sulfuric Acid

Conc. Wt.% 125°F 150°F 175°F 200°F 225°F 250°F 275°F 300°F Boiling
52°C 66°C 79°C 93°C 107°C 121°C 135°C 149°C
50 - - - - - - - - 0.12
60 - - - - - - - - -
65 - - - - - - - - -
70 - - - - - 0.11 - - 0.19
75 - - - - - 0.02 - - 0.20
80 - - - - - 0.02 0.02 - 0.33
85 - - - - - 0.01 0.02 0.46 0.67

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254.
Data are from Corrosion Laboratory Jobs 23-07 and 5-08.
All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Localized Corrosion Data

Critical Pitting Temperature (CPT) and Critical Crevice Temperature (CCT)

HYBRID-BC1® alloy exhibits exceptional resistance to pitting and crevice corrosion, as evident from the table below. To assess the resistance of nickel alloys and stainless steels to chloride-induced pitting and crevice attack, it is customary to measure their CPT and CCT in acidified 6 wt.% ferric chloride, in accordance with the procedures defined in ASTM Standard G 48.

These values represent the lowest temperatures at which pitting attack and crevice attack are encountered in this solution, within 72 hours. It should be noted that HYBRID-BC1 alloy exhibits a respectable uniform corrosion rate of approximately 0.5 mm/y (20 mpy) at 120°C in this solution, whereas B-3 corrodes at 47.69 mm/y (1,878 mpy) under the same conditions. While 120°C is the maximum temperature of HYBRID-BC1® alloy in acidified 6% FeCl3, the fact that the material can withstand such a strongly oxidizing medium to the 120°C, yet provide such high resistance to the key reducing acids, is remarkable.

Alloy Critical Crevice Temperature Critical Pitting Temperature
- °F °C °F °C
HYBRID-BC1® 257 125 >284 >140
C-4 122 50 212 100
C-22® 176 80 >284 >140
C-276 131 55 >284 >140
C-2000® 176 80 >284 >140
316L 32 0 59 15
254SMO® 86 30 140 60
625 104 40 212 100

Effect of Oxidizing Species

HYBRID-BC1® alloy can tolerate the presence of oxidizing species in many acid solutions. This is a major advantage over the nickel-molybdenum (B-type) alloys. Such species include dissolved oxygen, ferric ions, and cupric ions. In the following graphs, the effects of ferric ions and cupric ions upon the corrosion properties of B-3® and HYBRID-BC1® alloys, in 2.5% hydrochloric acid and 10% sulfuric acid, are compared. At higher concentrations, these effects are diminished, but nevertheless represent a remarkable achievement.

Resistance to Stress Corrosion Cracking

A common solution for assessing the resistance to chloride-induced stress corrosion cracking of a material is boiling 45 wt.% magnesium chloride. This table indicates the times required to induce cracking in U-bend samples. The tests were stopped after six weeks (1,008 hours).

Alloy Time to Cracking
HYBRID-BC1® No cracking in 1,008 h
C-4 No cracking in 1,008 h
C-22® No cracking in 1,008 h
C-276 No cracking in 1,008 h
C-2000® No cracking in 1,008 h
316L 2 h
254SMO® 24 h
625 No cracking in 1,008 h

Physical Properties

Condition Test Temperature Impact Strength
- °F °C ft-lbf J
Solution Annealed RT RT 360 488
Solution Annealed -320 -196 376 510
Annealed + Age Hardened* RT RT > 246 > 358
Annealed + Age Hardened* -320 -196 256 347

RT = Room Temperature

Impact Strength

Charpy V-Notch Samples from 12.7 mm (0.5 in) Plate

Condition Test Temperature Impact Strength
- °F °C ft-lbf J
Solution Annealed RT RT 360 488
Solution Annealed -320 -196 376 510
Annealed + Age Hardened* RT RT > 246 > 358
Annealed + Age Hardened* -320 -196 256 347

*Age Hardened:  2000 h at 427°C (800°F)

Tensile Data

Form Thickness Temperature 0.2% Offset Yield Strength Ultimate Tensile Strength Elongation
in/mm °F °C ksi MPa ksi MPa %
Sheet, Cold Rolled & Solution-Annealed 0.125/3.2 RT RT 58.7 405 122.0 841 61.6
200 93 52.2 360 117.6 811 66.1
300 149 48.3 333 114.4 789 64.5
400 204 45.0 310 110.6 763 63.3
500 260 42.4 292 109.4 754 67.9
600 316 41.1 283 108.0 745 68.5
700 371 40.0 276 108.3 747 76.9
800 427 40.6 280 112.8 778 75.3
Plate, Hot Rolled & Solution-Annealed 0.75/19.1 RT RT 52.5 362 117.4 809 70.5
200 93 47.4 327 112.9 778 74.8
300 149 42.7 294 108.7 749 74.8
400 204 38.8 268 104.8 723 74.6
500 260 35.7 246 102.4 706 74.7
600 316 35.6 245 100.4 692 71.1
700 371 34.8 240 99.8 688 74.0
800 427 32.7 225 99.0 683 76.3
Bar, Hot Rolled & Solution-Annealed 1.0/25.4 RT RT 55.9 385 120.6 832 63.0
200 93 50.4 347 115.8 798 73.6
300 149 45.1 311 111.5 769 72.8
400 204 41.9 289 107.8 743 72.1
500 260 39.6 273 105.2 725 72.7
600 316 37.1 256 103.5 714 72.0
700 371 36.6 252 103.3 712 72.0
800 427 37.2 256 102.3 705 74.1

RT= Room Temperature

Tensile Data for Weldments

• Transverse samples from welded plates of thickness 12.7 mm (0.5 in).
• Welding products made from same heat of HYBRID-BC1® alloy.

Welding Process Consumable Diameter Temperature 0.2% Offset Yield Strength Ultimate Tensile Strength Elongation
- in/mm °F °C ksi MPa ksi MPa %
Gas Tungsten Arc GTAW (TIG) 0.125/3.2 RT RT 69.4 478 122.0 841 40.9
200 93 60.7 419 114.4 789 37.0
300 149 58.0 400 109.7 756 40.1
400 204 56.7 391 104.8 723 36.2
500 260 51.4 354 103.9 716 40.2
600 316 50.9 351 100.9 696 39.0
700 371 47.0 324 99.3 685 41.3
800 427 51.5 355 100.3 692 41.1
Synergic Gas MetalArc GMAW (MIG) 0.75/19.1 RT RT 72.6 501 121.1 835 37.2
200 93 66.4 458 115.3 795 39.7
300 149 63.5 438 109.7 756 37.6
400 204 58.3 402 104.3 719 39.3
500 260 59.2 408 98.8 681 33.7
600 316 59.9 413 102.8 709 42.5
700 371 58.7 405 99.7 687 37.2
800 427 60.3 416 99.2 684 38.8
Shielded Metal Arc(SMAW) 1.0/25.4 RT RT 75.0 517 121.5 838 30.2
200 93 67.2 463 114.3 788 28.6
300 149 57.0 393 108.8 750 32.0
400 204 58.8 405 103.7 715 30.1
500 260 60.2 415 103.3 712 32.3
600 316 57.5 396 101.4 699 31.2
700 371 54.7 377 97.4 672 31.3
800 427 54.6 376 97.6 673 30.8

All Weld Tensile Metal Data

• Bar Samples of Diameter 12.7 mm (0.5 in) from GMAW (MIG) Cruciforms

Welding Process Consumable Diameter Temperature 0.2% Offset Yield Strength Ultimate Tensile Strength Elongation
- in/mm °F °C ksi MPa ksi MPa %
Synergic Gas MetalArc GMAW (MIG) 0.045/1.1 RT RT 73.8 509 110.8 764 47.7
200 93 68.9 475 104.8 723 46.1
300 149 64.8 447 101.6 701 50.8
400 204 62.3 430 96.8 667 47.2
500 260 62.6 432 93.8 647 46.0
600 316 61.2 422 94.4 651 51.3
700 371 59.8 412 91.6 632 49.5
800 427 58.8 405 88.9 613 50.9

Heat Treatment

Wrought forms of HYBRID-BC1® alloy are furnished in the solution-annealed condition, unless otherwise specified. The standard solution-annealing treatment consists of heating to 1149°C (2100°F) followed by rapid air-cooling or (preferably) water quenching. Parts which have been hot formed should be solution annealed prior to final fabrication or installation. The minimum hot forming temperature of the alloy is 954°C (1750°F).

Forming

HYBRID-BC1® alloy has excellent forming characteristics, and cold forming is the preferred method of shaping. The alloy can be easily cold worked due to its high ductility; however, the alloy is stronger than the austenitic stainless steels and therefore requires more energy during cold forming. For information on cold-working of the HASTELLOY® alloys, and recommendations regarding the needs for subsequent solution-annealing, please click here.

Specifications and Codes

Specifications

HYBRID-BC1® alloy (N10362)
Sheet, Plate & Strip B575 P= 43
Billet, Rod & Bar B574 B472 P= 43
Coated Electrodes SFA 5.11/ A5.11 (ENiMoCr-1) F = 43
Bare Welding Rods & Wire SFA 5.14 / A5.14(ERNiMoCr-1) F = 44
Seamless Pipe & Tube B622 P= 43
Welded Pipe & Tube B619 B626 P= 43
Fittings B366
Forgings B462 B564 P= 43
DIN No. 2.4708 NiMo22Cr15
TÜV -
Others -

 

Codes

HYBRID-BC1® (N10362)
ASME Section l -
Section lll Class 1 -
Class 2 -
Class 3 -
Section Vlll Div. 1
800°F (427°C)1
Div. 2 -
Section Xll -
B16.5 -
B16.34 -
B31.1
800°F (427°C)1
B31.3 800°F (450°C) 
VdTÜV (doc #) - -

1Plate, Sheet, Bar, Forgings, fittings, welded pipe/tube, seamless pipe/tube

Disclaimer

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data displayed on this site but makes no representations or warranties as to the data’s accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums.  It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc.  All trademarks are owned by Haynes International, Inc., unless otherwise indicated.

Alloy Brochure

Download